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Abstract 

A simple new approach for the evaluation of the elec- 
tronic kinetic energy density, G(r), from the experi- 
mental (multipole-fitted) electron density is proposed. It 
allows a quantitative and semi-quantitative description 
of the G(r) behavior at the bond critical points of 
compounds with closed-shell and shared interactions, 
respectively. This can provide information on the values 
of the kinetic electron energy densities at the bond 
critical points, which appears to be useful for quantum- 
topological studies of chemical interactions using exper- 
imental electron densities. 

1. Introduction 

Bader's quantum-topological theory (Bader, 1990; 
Tsirelson & Ozerov, 1996) suggests a powerful approach 
for chemical-bond analysis in a system. This approach 
does not rely on a reference density and thus is 
free of some of the uncertainties of the deformation- 
electron-density approach for electron-rich atoms (e.g. 
Savariault & Lehmann, 1980; Dunitz & Seiler, 1983; 
Dunitz, Schweizer & Seiler, 1983). The definition 
and classification of the chemical bond in topological 
analysis are based on the existence of a saddle point 
(bond critical point) of the total electron density, 
p(r), between neighboring atoms, and on the value 
of the Laplacian of the total electron density at 
this point (Bader & Essen, 1984). Additional useful 
information about chemical-bond type can be obtained 
from knowledge of the electronic kinetic energy density 
(or local kinetic density) value, G(rc) (Bader & Essen, 
1984), and total electronic energy density value, E ( r )  
(Cremer & Kraka, 1984), at the bond critical point. 
The ratio G(r) /p ( r )  should be less than unity and 
E ( r )  should be negative for a shared interaction 
(covalent bond), while the former is greater than 
unity for a closed-shell interaction (ionic, hydrogen 
or van der Waal's bonds). The energy densities can be 
easily obtained in a quantum-topological study of the 
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theoretical electron density. However, this is not the case 
for the application of this approach to the experimental 
electron densities obtained by X-ray diffraction. The 
latter field of application is now rapidly developing (e.g. 
Kapphann, Tsirelson & Ozerov, 1988; Craven & Stewart, 
1990; Destro, Bianchi, Gatti & Merati, 1991; Gatti, 
Bianchi, Destro & Merati, 1992; Destro & Merati, 1995; 
Iversen, Larsen, Souhassou & Takata, 1995; Tsirelson, 
1996; Tsirelson & Ozerov, 1996) owing to the possibility 
of analytical representation of the experimental electron 
density by various multipole models (Hirshfeld, 1971; 
Stewart, 1976; Hansen & Coppens, 1978), which allow 
analytical or numerical evaluation of the total electron- 
density Laplacian and gradient vector field. In the 
present work, an attempt to develop an approach for 
the evaluation of electronic kinetic energy density at 
the bond critical-point region from the experimental 
electron density is described. 

2. Approach 

2.1. Description of the problem 
Taking into account the complexity of the problem 

under consideration, we should take advantage of all 
possible simplifications. The specifics of our case are as 
follows. We are not particularly interested in the proper 
description of the short-range or long-range behavior 
of the kinetic energy density. The former is a core 
region, which is not so interesting from the point of 
view of the topological study of chemical bonding 
in the system. The latter is a region of negligibly 
small values of kinetic energy density relative to the 
short- or medium-range contributions at this point from 
other atoms in the crystal. Thus, we are interested in 
a fairly simple approach that allows relatively accurate 
description of the medium-range [ ,~l-4bohr  (1 Bohr 
radius = 5.291 772249 x 10 -I1 m)] behavior of the 
kinetic energy density. This is this region where bond 
critical points lie and redistribution of valence density 
due to chemical bonding takes place. In the general 
case, the kinetic energy density of a quantum system 
can be correctly expressed in terms of the first-order 
density matrix p(r, r ')  in two alternative ways:~ (Bader 

:~ Atomic units (a.u.) are used throughout the paper. 
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& Preston, 1969; Tal & Bader, 1978): 

G(r) - gt[p(r, r')] = ½VV'p(r, r')lr= r, 
N 

- 1- E IV~,(rl[ 2 
- -  2 

i = 1  

(1) 

o r  

K ( r ) -  gk[p(r,r')]  = - ½V2p(r,r')lr=~, 
N 

_-- I ~ **(r)V2~i(r), (2) 
i = 1  

where ~i(r) is a single-occupied Hartree-Fock (HF) spin 
orbital of a system with N electrons. The two forms of 
the kinetic energy density are related to each other by 
the expression (Bader & Preston, 1969) 

K(r) = G ( r ) -  ¼V2p(r). (3) 

According to the Gauss theorem, f V2p(r)dr  = 
fs ~TP( r )n(r )dr  = 0, since both p(r) and Vp(r) are 
equal to zero on the surface S covering the whole 
many-electron system. Thus, K(r) and G(r) integrate to 
yield the same value of the total kinetic energy, T. In 
this sense, the local kinetic energy yielding the correct 
value of the total kinetic energy is only defined up to 
C * V2p(r), where C is an arbitrary constant. 

Although the problem of the reconstruction of the 
one-electron-density matrix p(r, r ') from p(r) obtained 
from the diffraction experiment has been considered 
before (Aleksandrov, Tsirelson, Reznik & Ozerov, 
1989; Tanaka, 1988; Schmider, Smith & Weyrich, 1992; 
Howard, Huke, Mallinson & Frampton, 1994), we are 
going to propose here an alternative less accurate but 
easier approach for the evaluation of the local kinetic 
energy density at the bond critical point of the multipole- 
fitted electron density. A simple approximate way 
of directly relating the kinetic energy density to the 
electron density was introduced by the semiclassical 
Thomas-Fermi equation (March, 1957) with gradient 
quantum corrections (von Weizsacker, 1935; Kirzhnitz, 
1957). Rather good results for the total kinetic energy, T, 
to within an accuracy of less than 1%, can be obtained 
for free atoms by using the Thomas-Fermi equation with 
the second gradient correction according to Kirzhnitz 
(e.g. Wang, Parr, Murphy & Henderson, 1976): 

r=To+r2 
= (3/10)(37r2) 2/3 f p(r) 5/3 dr 

+ (1/72)f[Vp(r)]2/p(r)dr .  (4) 

The second term here is 1/9 of the original von Weiz- 
sacker (1935) correction. It is justified in the long-wave 
limit (Jones & Young, 1971), corresponding to the 
smoothly varying charge density, as a valence density 

near the bond critical point is. At the same time, the 
spatial behavior of the kinetic energy density, used 
in (4), agrees poorly with the HF results (Alonso & 
Girifalco, 1978b; Tal & Bader 1978; Murphy & Parr, 
1979), displaying large errors at very small and very 
large distances from the nucleus. The errors in these 
regions are of a fundamental nature, being due to the 
breakdown of the main assumptions of the theory such as 
the presence of a slowly varying potentia| (not fulfilled 
near the nucleus) in a volume of high electron density 
(not fulfilled far from the nucleus). Cancellation of the 
errors between these two limiting regions yields good 
results for the total kinetic energies. On the other hand, 
Alonso & Girifalco (1978b) have paid attention to the 
necessity to consider the total form of Kirzhnitz's (1957) 
gradient correction gk 2[p] for the kinetic energy density 
calculations: 

gk2[P] = (1/72)[Vp(r)]2/p(r) - (1 /12)V2p(r) .  (5) 

The second term in (5) integrates to zero and thus 
is usually not considered in the total kinetic energy 
calculations. However, its inclusion noticeably improves 
agreement of the calculated kinetic energy density with 
the Hartree-Fock density gk[p], as defined by (2). More- 
over, the best agreement occurs in the medium-range 
region, which is of the most interest for us. The kinetic 
energy density equation (5) can be easily transferred to 
gt form using (3): 

G(r) -_- gt[p] 
= (3/lO)(37r2)2/3p(r) 5/3 

+ (1/72)[Vp(r)]2/p(r) + (1/6)V2p(r). (6) 

This equation is twice the first three terms of the ex- 
pression obtained earlier for the semiclassical expansion 
of the kinetic energy density defined as twice (1), using 
the partition-function method (Brack, Jennings & Chu, 
1976) and Wigner transform of operators (Grammaticos 
& Voros, 1979). 

In Fig. 1, the results of the various forms of the 
Thomas-Fermi approach for the kinetic energy densi- 
ties in the He and Ne atoms are compared with the 
Hartree-Fock results. It is evident that the use of (6) con- 
siderably improves the agreement with the HF density in 
the valence region. The best agreement, to within 25%, 
occurs at distances 1-3 bohr from the nuclei. The total 
kinetic energies are not affected by the Laplacian in (6) 
and thus, according to Wang, Parr, Murphy & Henderson 
(1976), differ from the HF values by only 0.59 and 
-0.54% for He and Ne, respectively. The fourth-gradient 
correction for the kinetic energy density (Hodges, 1973) 
being taken into account spoils the G(r) behavior in the 
long-range region and almost negligibly contributes to 
the medium-range (,-~0.5-2.5 bohr) behavior of the local 
kinetic energy. 
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2.2. Testing approach (6) at the bond critical points 
In the next step, we compared the results for kinetic 

energy density G calculated by (6) with HF results at 
the bond critical points in molecules. For this purpose, 
we used the published (Bader & Essen, 1984) results of 
an HF study of the electron density, the Laplacian of 
the electron density and the local kinetic energy G at 
the bond critical points in some molecules. According 
to the definition of the critical point, the gradient of 
the electron density is equal to zero at this point and 
the first term of the gradient correction in (6) vanishes. 
The published data (Bader & Essen, 1984) and data 
calculated by (6) are presented in Table 1. It is clear from 
Table 1 that the approach used gives quite good results 
(within 4%) for the kinetic energy densities at the bond 
critical points of molecules with closed-shell interactions 
between corresponding atoms. On the other hand, the 
results for molecules with shared interactions, though 
improved by comparison with those calculated by (4), 
still show large errors. The basic source for the observed 
disagreement for molecules with shared interactions can 

be accounted for by the nonlocal rather than local nature 
of the kinetic energy density functional of p(r) (Alonso 
& Girifalco, 1978a). That is, in general the value of the 
kinetic energy density at any point of a system cannot be 
fully determined only by the value of the charge density 
at this point, as is stated by the local functional (6). In 
practice, rather than searching for an unknown nonlocal 
functional, a partitioning of the charge density is usually 
applied. The most successful partitioning was suggested 
in the well known Kohn-Sham orbital model (Kohn 
& Sham, 1965). Among known simpler partitioning 
schemes (Ashby & Holzman, 1970; Goodisman, 1970, 
1971; Tal & Bader, 1978), the latter seems to be the 
most favorable. In their work, Tal & Bader suggested 
the partitioning of p(r) into rapidly varying and slowly 
varying terms. This results in noticeable improvement 
of the local behavior of the kinetic energy, most of all 
in the short-range and long-range regions. However, it 
is easy to find that this model also does not lead to a 
proper description of the local kinetic energy behavior 
in the medium-range region of molecules with shared 
interaction. 
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Fig. 1. Comparison of the model kinetic electron energy density 
distributions, G, with those calculated from Hartee-Fock wave 
functions, GH~ (Clementi & Roetti, 1974) for free (a) He and (b) 
Ne atoms. (I) G(r) is calculated by the Thomas-Fermi approach; 
(2) G(r) is calculated by the Thomas-Fermi approach with the 
second-gradient correction in the form (I/72)[Vp(r)]2/p(r); (3) 
G(r) is calculated according to equation (6); (4) G(r) is calculated 
according to equation (6) with the addition of the fourth-gradient 
correction according to Hodges (1973). 

2.3. Partitioning scheme 
Another partitioning scheme is proposed in the 

present work. It is expected that its application will 
improve the results of approach (6) for the medium- 
range behavior of the kinetic energy density in systems 
with shared interaction between atoms, while it will 
not spoil the already satisfactory results for compounds 
with closed-shell interaction. The consideration of the 
nonlocality of the kinetic energy density functional of 
p(r) in the new scheme fundamentally differs from 
that in the scheme proposed by Tal & Bader (1978). It 
arises from the fact that, although the bonding density 
is dominant in the internuclear region between atoms 
displaying shared interaction, its contribution to the 
local kinetic energy in this region is not dominant 
(Bader & Preston, 1969; Schwarz, Valtazanos & 
Ruedenberg, 1985). Indeed, according to the second 
expression for gt[p(r, r')] in (1), the contribution to the 
local kinetic energy density of the highest occupied 
cr bonding molecular orbital (MO), for which the 
d~nsity distribution displays a maximum between two 
nuclei in compounds with a shared interaction, is low 
in this region. It even goes to zero at the point of 
maximum orbital charge density. On the other hand, 
the contribution of the highest occupied antibonding 
MO, 0.,, to gt[p(r,r ')] in the internuclear region is 
relatively large owing to the presence of a nodal 
plane, where the wavefunction is zero. For example, 
the 30., and 20 bonding MOs of the F 2 molecule 
(Cade ~ Wahl, 1974), which account for almost 100% 
(0.29 a.u.) of the charge density at the bond midpoint 
(bond critical point), display no contribution to the 
local kinetic energy density at this point. Contrary 
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Table 1. Comparison of Hartree-Fock and model [equations (6), (15)] kinetic energy densities at the bond critical 
points 

All values are in a.u. One atomic unit of density = 6.748 e ,~-3 and of V2p = 24.10 e A -5. Results of the near-Hartree-Fock calculations are 
taken from Bader & Essen (1984). 

Molecule and 
interaction R 

Closed-shell interactions 

Results of the theoretical calculations Results of the model calculations 
From equation (6) From equations (15), (16)* 

p(rc) V2p(rc) G(r~) G(r~)/p(r~) G(r~)t G(rc)/p(r~) G(r~)t G(rc)/p(rc) 

He z 3.000 0.0367 
Ne2 3.000 0.1314 
Ar 2 4.000 0.0957 
LiCI 3.825 0.0462 
NaCI 4.461 0.0358 
NaF 3.629 0.0543 
KF 4.104 0.0554 
MgO 3.305 0.0903 
Hydrogen bond 

in (HzO)z 3.853 0.0198 
Hydrogen bond 

in (HF)z 3.360 0.0262 

Shared interactions 
H 2 1.400 0.2728 
B 2 3.005 0.125 
N 2 2.068 0.7219 

O 2 2.282 0.5513 

F 2 2.680 0.296 

CC bond in 
ethylene 2.489 

CC bond in 
benzene 2.619 

CC bond in 
ethane 2.886 

CH bond in 
CH 4 2.048 

0.2501 0.054 1.47 0.053 (2) 1.44 
1.3544 0.331 2.52 0.323 (2) 2.46 
0.4455 0.127 1.33 0.132 (4) 1.38 
0.2657 0.064 1.39 0.061 (5) 1.32 
0.2004 0.047 1.30 0.045 (4) 1.26 
0.4655 0.105 1.94 0.100 (5) 1.84 
0.3132 0.078 1.41 0.075 (4) 1.35 
0.6506 0.169 1.87 0.161 (5) 1.78 

0.0623 0.016 0.806 0.015 (1) 0.758 

0.1198 0.027 1.027 0.027 (1) 1.031 

Promolecule orbitals1: 

-1 .3784 0.017 0.062 0.100 0.367 -0 .020  
-0.1983 0.050 0.396 0.057 (13) 0.456 0.056 (12) 0.408 sp-sp 
-3 .0500 0.625 0.866 1.160 (86) 1.607 0.659 (5) 0.913 p-p 

0.551 (13) 0.763 sp27-sp27§ 
- 1.0127 0.485 0.88 0.896 (85) 1.625 0.608 (25) 1.103 p-p 

0.509 (5) 0.923 sp6"5-sp6"5§ 
0.233 0.255 0.86 0.416 (64) 1.405 0.299 (12) 1.010 p-p 

0.277 (8) 0.936 sp27"7-sp27"7§ 

0.3627 -1.1892 0.139 0.383 0.331 0.913 0.149 (7) 0.411 sp2-sp 2 

0.3268 -1 .0134 0.096 0.293 0.276 0.845 0.122 (27) 0.374 sp2-sp 2 

0.2523 -0.6615 0.049 0.196 0.179 0.709 0.080 (63) 0.317 sp3-sp 3 

0.2770 -0 .9784 0.039 0.141 0.175 0.632 0.059 (50) 0.213 sp3-s 

* Bonding geometry and unknown positions of the bond critical points are taken from Wiberg, Bader & Lau (1987). ~ Moduli of percent errors 
(less than 100%) relative to the theoretical values are shown in parentheses. ~; Type of overlapping orbitals of atoms A and B used for 
promolecule density /)hyb(r) construction along the A - - B  bond. Each orbital is singly occupied. §sp; hybrids are taken from Foster & 
Weinhold (1980). 

to that, the 20,, antibonding MO, which has a zero 
density at the bond midpoint, contributes ,-.,0.10a.u. 
(--~40%) to the local kinetic energy at this point. Thus, 
the accumulation of the charge density at the bond 
critical point of the compounds with shared interaction 
does not contribute to the local kinetic energy at this 
point. Such behavior cannot be accounted for by the 
dominant first term of (6). On the other hand, the third 
term, ( l /6)V2p(r) ,  takes into account these quantum 
effects only partially, with the values of G ( r )  being 
considerably overestimated (Table 1) in the compounds 
with shared interactions, where the contribution of the 
bonding density is dominant in the internuclear region. 

In order to apply this qualitative consideration to the 
development of a new partitioning scheme, identification 
of the electron-density term mostly responsible for the 
discussed nonlocality of the local kinetic energy func- 
tional of p(r) at the bond critical point is desirable. It 
is easy to show that this term represents interference 

of those atomic orbitals in the molecule that can lead 
to contributions to the charge density and local kinetic 
energy in the internuclear region that are opposite in 
sign, and thus accounts for the nonlocality of the local 
kinetic energy functional of p(r) qualitatively discussed 
above. Considering for simplicity only two overlapping 
valence orbitals of interacting atoms, 9)~ and ~2, the 
bonding and antibonding MOs, ~b h and ~b,,, can be 
approximated respectively as (McWeeny, 1979) 

~b h = Nb(~ , + j3~2), (7) 
"l/'a = N a ( ~ 2  - ['~t g)l), (8)  

where N h = ( l + / 3 2 + 2 / 3 S 1 2 )  -1/2, N = (1 + [ 3  ' 2 -  
2fl'Si2) -1/2 are the normalization coefficients, Sl2 = 
f ¢Pl 9)2 dr is the overlap integral,/3 and [3' (0 < ~, fl~ < 
2 )  measure the 'polarity' of the MOs. The limits 
/3,/?3' ~ 0 and/3,/3' ~ ~ would concentrate MO charge 
densities entirely on separate atoms: ~/2h ~ 9)t, ~/2,~ ~ ~P2 
or ~h,, ~ 9)1, ~/2~, ~ 9)2, respectively (closed-shell inter- 
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action). For/3,/3'  ~ 1, the electrons would be equally 
shared between the two atoms (shared interaction). The 
corresponding orbital densities and orbital local kinetic 
energies are 

Pb %1%12 2 2 2 2 - -  - -  n b N ~ , ( t p l  -+-/3 992 + 2/3~0,cp2 ), (9) 

In the proposed model of the kinetic energy density 
functional G based on this partitioning scheme, both 
components of the charge density, Zip(r) and pci(r), 
are considered separately in the first term of (6), while 
Kirzhnitz's gradient quantum correction [terms 2 and 3 
of (6)] is applied to the total electron density p(r): 

V b = ½nblVCbl 2 
I ,2 2 -- ~nbN'b(VCpl +/32Vtp22 -1- 2/3V~0 1V:2), (10) 

Pa n al%l 2 ~ 2 ,~,2 2 = = n,,N~(~o 2 + p qO I - -  2/3'~o,~pz ), (11) 

Go = ½n,~lX7¢al 2 
1 2 2 = 2naN~(Vcp2 +/3'2Vcp2!- 2/3'Vcp, V~o2), (12) 

where n b and n,, are the occupation numbers of the MOs. 
Taking into account that V~p~ and ~7~0 2 have opposite 
signs near the bond critical point along the internuclear 
vector (Goddard & Wilson, 1972), it is evident from 
(9)-(12) that in this region the interference term gives 
a contribution to charge density that is opposite in 
sign to its contribution to the local electron density for 
both bonding and antibonding MOs. The total valence- 
electron kinetic energy density can be represented from 
(10) and (12) as 

G = G b + G a 
_ ,  2 2 ,2 2 V~p2(fl2nbN2 noN2o)] - 2[Vqa,(nbN" b + fl %Na) + + 

+ V ~ , V ~ 2 ( Z n b N ~  ' 2 - f l  n ,~N~) .  (13) 

Thus, according to (13), the local kinetic energy of 
the valence electrons in the molecule can be split into 
two parts. The first term in this equation corresponds 
to separate contributions from each overlapping atomic 
orbital before the electrons are spin coupled. The second 
term corresponds to the net contribution of the con- 
structive interference of these atomic orbitals, leading to 
molecular-orbital formation. In pure ionic compounds, 
this term vanishes due to n a = 0 and /3 ~ 0 or oo, 
while in the compounds displaying van der Waals bonds 
or long and intermediate hydrogen bonds this term is 
negligible owing to the full occupation of both bonding 
and antibonding MOs and an electrostatic rather than an 
exchange interaction. On the other hand, in compounds 
with shared interaction, noticeable contribution of the 
interference term to the local kinetic energy in the 
internuclear region takes place. 

We propose to take into account approximately the 
discussed nonlocality of the local kinetic energy func- 
tional of p(r) at the bond critical point within approach 
(6) by partitioning the total electron density into a 
contribution pci(r), arising from the net constructive 
interference of the overlapping orbitals, and a difference 
density Zip(r) = p ( r ) -  Pci(r). 

p(r) : Zip(r) + Pci(r). (14) 

G(r) =- gt[p] 

= (3/lO)(3~r2)2/3[Ap(r) 5/3 + Pci(r) 5/3] 

+ (1 /72)[Vp(r)]2 /p(r )  + (1/6)V2p(r).  (15) 

2.4. Approximate isolation o f  the net constructive 
interference contribution to the total charge density 

Low & Hall (1990) isolated the net contribution of 
constructive interference of bonding orbitals to the total 
charge density by subtracting the generalized valence- 
bond (Cooper, Gerratt & Raimondi, 1987) pair pro- 
molecule from the total charge density of the molecule. 
Such a promolecule is believed to preserve the orienta- 
tion, polarization, electron promotion, orbital hybridiza- 
tion and delocalization (including charge transfer) effects 
of atomic charge density in the molecule. The earlier use 
of a promolecule constructed from valence-state hybrid 
atoms (Kunze & Hall, 1986, 1987) did not preserve the 
delocalization effect. 

A thorough approach for construction of a reference 
procrystal density from the optimally orientated, occu- 
pied and shaped degenerate or quasidegenerate atomic 
ground states by adjusting to experimental structure- 
factor data was developed by Ruedenberg & Schwarz 
(1990). The difference between experimental and pro- 
crystal densities, which reflects the orbital interference 
effect in the interatomic region, was called the chemical 
deformation density. 

We propose that, for our task of semi-quantitative 
evaluation of the local electronic kinetic energy at the 
bond critical point from the experimental electron den- 
sity, the use of a promolecule Ap(r)  = Phy (r) con- _b 
structed from the superposition of maximum-overlap 
hybrid atoms (Pauling, 1961) is the most favorable 
for the isolation of the net constructive interference 
contribution to the electron density at this point: 

pci(r) = p ( r ) -  Phyb(r). (16) 

The following method of procrystal (promolecule) 
construction is suggested for atoms with sp valence 
states: 

(i) The non-equivalent hybrid orbital model should be 
applied for atoms in the general form 

hA(O) = N(s + ~l/2po), (17) 
where hA(O ) is the sp A hybrid atomic orbital, Po is any 
normalized combination of the three p orbitals pointing 
in the direction 0, N is a normalizing constant and 
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(generally noninteger) reflects the degree of s and 
p orbital mixing. The type and order of the orbital 
hybridization can be determined by the angles between 
aspherical valence atomic densities (Coulson, 1952). 
Zero atomic orbital hybridization displaying only ori- 
ented (A ,,~ 100) atomic valence-density distribution can 
occur as a particular case as well. However, for simplic- 
ity, the notation 'hybrid' will be applied below for any 
valence orbital of atoms in the procrystal (promolecule). 

(ii) The procrystal valence density can be constructed 
from the corresponding sp A 'hybrid' atomic orbitals 
using tabulated atomic (ionic) wavefunctions (Clementi 
& Roetti, 1974). An sp A 'hybrid' model of an atom in 
the crystal can be introduced in terms of the refined mul- 
tipole model (Takazawa, Ohba & Saito, 1989) as well 
and occupation of the 'hybrid' orbitals can be determined 
from the multipole parameters obtained (Okuda, Ohba, 
Saito, Ito & Shibuya, 1990). However, one should re- 
member that, although the multipole model expresses the 
crystal charge density with a linear combination of one- 
center real spherical harmonics, it describes two-center 
contributions, such as the constructive interference den- 
sity, together with all other (orientation, polarization, 
hybridization and delocalization) contributions. That is 
why the use of tabulated average free-atom orbital expo- 
nents ~ (Clementi & Raimondi, 1963) appears to be more 
favorable for one-center 'hybrid' model construction 
than refined values, which are affected by the orbital 
interference density. 

(iii) Delocalization (charge-transfer) effects can be 
approximately induced in the procrystal density through 
the setting of the occupation numbers of the 'hybrid' 
orbitals. This can be done by taking into account the 
tendency of the charge transfer reflected by the atomic 
monopole populations obtained from the multipole re- 
finement, independent results, chemical intuition and 
general considerations. For example, the occupation of 
the promolecular 'hybrid' orbitals, describing the lone- 
pair charge density in a molecule or crystal, should be 
equal to 2 e; the joint occupation of the two overlapping 
'hybrid' orbitals of neighboring atoms should not be 
more than 2 e and the electroneutrality condition should 
be preserved for the whole crystal. 

It is evident that for crystals with closed-shell interac- 
tions, where the asphericity of the charge density should 
be small, the promolecule charge density constructed 
according to (i)-(iii) above is close to the crystal density. 
In this case, according to (16), p,i(r) is negligible 
relative to the total charge density and one can directly 
use (6) for kinetic energy density evaluation. 

The application of the described partitioning scheme 
to compounds displaying shared interaction results in 
a generally significant improvement of the calculated 
kinetic energy densities at the bond critical points (see 
Table 1). Two different 'hybrid' promolecule models 
were independently applied for the diatomic molecules 
N 2, O 2 and F 2. The first model is simply an oriented- 

atom model with no sp hybridization. In this case, the 
configuration of the atomic orbitals oriented along the 
internuclear bond is 2p I . The other model uses results of 
a published (Foster & Weinhold, 1980) theoretical study. 
The sp hybridization in this model reflects the non- 
bonded Pauli repulsion acting on the occupied atomic 
ls and 2s orbitals in the molecule. As a result, the 
bonding hybrid orbital has high p character and the 
lone pair behind the nuclei has high s character in the 
molecules. It can be seen from Table 1 that the use of the 
oriented-atom approximation without hybridization for 
promolecule construction leads to satisfactory agreement 
with the HF values for G at the bond critical points. 
However, the use of the 'hybrid' 02 and F 2 promolecules 
results in a qualitative improvement of the G(rc) /p(rc)  
values. The largest disagreement with the theoretical 
data for the shared interaction occurred in the cases 
of the C- -C bond in ethane and the C- -H bond in 
methane. The latter case is quite understandable, taking 
into account that the light H atom is the worst object for 
the application of the statistical approach (6). 

3. Some experimental results and discussion 

The suggested method of the evaluation of the lo- 
cal kinetic energy at the bond critical point of the 
experimental charge density was applied to the NaF, 
MgO, C2H 4 and C2H 2 molecules, constructed using the 
model parameters obtained from the multipole refine- 
ment of X-ray single-crystal diffraction experiments. 
Only spherically symmetric terms of the pseudoatom 
charge densities are significant for the NaF and MgO 
crystal models. In this series of compounds, the chemical 
bond displays both the closed-shell (NaF and MgO) and 
the shared (C2H 4 and C2H2) nature. A bond critical- 
point search and calculation of the properties of charge 
density at these points in the NaF and MgO molecules 
was performed using the program LSPROP (Howard & 
Mallinson, 1992). Experimental charge density and its 
Laplacian at the bond critical points in the C2H 4 and 
C2H 2 molecules were taken from Kapphann, Tsirelson 
& Ozerov (1988). The results obtained are compared, 
along with the results for the independent-atom (IAM) 
and independent-ion (IIM) models, with the published 
theoretical calculations for corresponding molecules in 
Table 2. Theoretical and experimental values of charge 
density and its Laplacian show quantitative and semi- 
quantitative agreement, respectively, at the critical points 
of all molecular densities studied. The worst agreement 
is observed for ethylene. The calculated local kinetic 
energies at the bond critical points appeared to be in the 
quantitative (within 6% for MgO) and semi-quantitative 
(within 15% for NaF, 20% for C2H 4 and 27% for 
C2H2) agreement with the theoretical values. This is 
in general accordance with the observed accuracy of 
the suggested method in application to the theoretical 
molecular densities (Table 1). 
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Table 2. Comparison of bond critical-point properties of experimental and theoretical molecular charge densities 
Experimental molecular charge densities are constructed using model parameters received from the multipole refinement of single-crystal X-ray 
data. Only spherically symmetric terms of the pseudoatom charge densities are significant for the NaF and MgO density models. All values are in 
a.u. 

Molecule Bond R P(rc) V2p(rc) G(rc) G(rc)/p(r¢) 
NaF, theoryt Na- -F  3.629 0.05 0.47 0.11 1.94 
NaF, exp. + Na- -F  3.629 0.05 0.41 0.09 1.69 
NaF, IAM§ Na- -F  3.629 0.06 0.41 0.09 1.64 

MgO, theory'f Mg- -O  3.305 0.09 0.65 O. 17 1.87 
MgO, exp.¶ Mg- -O 3.305 0.09 0.65 0.16 1.80 
MgO, IAM Mg--O 3.305 0.08 0.64 0.15 1.88 
Mg+O - , IIM** Mg--O 3.305 0.09 0.64 0.16 1.80 

C2H 4, theory~f~f C~-C 2.489 0.37 - 1.22 0.15 0.41 
CEH 4, exp.~:~ C = C  2.525 0.32 -0 .69 0.18 0.56 
C2H4, IAM C--~C 2.525 0.24 -0.21 0.21 0.85 

C2H 2 , theorytt C--~C 2.239 0.42 -1.28 0.33 0.79 
C2H 2, exp.:~ C--~C 2.236 0.42 - 1.30 0.24 0.57 
C2H 2, IAM C~---C 2.236 0.30 -0 .59 0.26 0.84 

Model for G(rc) calculation* 

Equation (6) 
Equation (6) 

Equation (6) 
Equation (6) 
Equation (6) 

Equations (15), (16) sp 2-sp 2 
Equations (15), (16) sp 2-Sp 2 

Equations (15), (16) sp-sp 
Equations (15), (16) sp-sp 

* Types of overlapping singly occupied orbitals used for promolecule density Phyb(r) construction along the bond are presented for model 
(16). t Bader & Essen (1984). ~: Su & Coppens (1995). § Independent atomic model. ¶ Abramov, Avilov, Belokoneva, Kitaneh, Feil, 
Tsirelson & Okamura (1995); Tsirelson, Avilov, Abramov, Belokoneva, Kitaneh & Feil (1997). ** Independent ionic model. The IIM model 
of the NaF molecule almost coincides with the experimental multipole model and is not considered separately here. t t  Cremer & Kraka 
(1984). J;++ Kapphann, Tsirelson & Ozerov (1988). 

The values of p(r.),  T2p(r,) ,  G ( r )  and G(rc)/p(r, ) 
obtained from the experimental charge density (Table 
2) adequately reflect the change of the nature of the 
chemical interaction in this series of molecules: from the 
ionic Na--F  and Mg--O to the strong covalent C:=C 
and C~=:C. 

The calculated values of the electronic kinetic energy 
density at the bond critical points of the IAM and IIM 
charge densities (Table 2) appear to be rather close to 
the corresponding experimental and theoretical values. 
The agreement between IAM and theoretical values of 
G(r.) is worse by ,-~ 6% (for MgO ) and by ,-~ 20% (for 
C2H4) and better by ,-~6% (for C2H 2) than that between 
corresponding experimental and theoretical values. The 
IAM value of G ( r )  in the NaF molecule is almost the 
same as the experimental one. 

The reason for such behavior of the calculated local 
kinetic energies at the bond critical points of IAM (and 
IIM for MgO) charge densities is different for ionic 
and covalent molecules. In the former case, the position 
of the ( 3 , -  1) critical point, the charge density and its 
Laplacian at this point of IAM and IIM densities are 
close to the corresponding experimental and theoretical 
values (Table 2). Consequently, the calculated [by (6)] 
experimental and IAM or IIM values of G(r.) appear 
to be also close to each other. This is not the case for 
molecules with shared interaction where charge density 
and its Laplacian at the bond critical points of IAM 
densities differ noticeably from those values in the 
experimental and theoretical molecular charge densi- 
ties (Table 2). Resulting rather close correspondence of 
the IAM values of G ( r )  to those obtained from the 
experimental charge densities and from the theoretical 
calculations can be accounted for by the cancellation 

of the contributions from the underestimated values of 
p(rc) and the overestimated values of X72p(rc) (Table 
2) in (15). However, the obtained semi-quantitative 
agreement between theoretical and IAM values of G(rc) 
for compounds with shared interactions should be con- 
sidered as accidental. For example, for F 2 and N 2 
molecules, the disagreement between the IAM values of 
G(r.) calculated by (15), using FLOxPv(SP"" z 2  2 0 04 ) ( sp  z 2  27.)]7 I 

N/s  2 1 I I and t PxP,.P:) promolecular densities, and the corre- 
sponding theoretical values (Table 1) is 93 and 138%, 
respectively. 

It is necessary to note that the molecular experi- 
mental charge density constructed from the multipole 
parameters obtained from the diffraction experiment 
is already affected by the crystal-field effect and by 
the intramolecular interactions. This means that the 
most correct study of the applicability of the suggested 
model of the evaluation of the local electronic kinetic 
energy at the bond critical point should be performed by 
comparison of the results for the experimental crystal 
charge densities with those derived from the accurate 
theoretical study of the corresponding periodic systems. 
This will be the subject of following studies. 

Careful consideration of the error analysis in the G(rc) 
values derived from the multipole charge density by the 
suggested method will be the subject of the forthcoming 
study. Here we should like to outline the following 
aspects of this problem. The biggest contribution to the 
systematic error in G(r.), equations (6) and (15), is 
expected to be due to the T2p(rc) term. Indeed, in the 
reciprocal space, the Laplacian of the charge density dis- 
plays dependence on (sin 0/A) 2 (Stewart, 1979). Thus, 
the use of the truncated observed structure-factor set 
would affect the multipole parameters (and the Laplacian 
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of the charge density derived from these parameters) 
through the least-squares fitting. However, this is mostly 
important for the proper description of the regions with 
the rapidly varying Laplacian, i.e. core regions, while 
for our task only the valence region is of main interest. 
Another source of error in the experimental charge 
density and especially in its Laplacian is that these values 
are affected by thermal atomic motions in crystals and 
in fact refer to the mean thermal nuclear distribution 
(Tsirelson & Ozerov, 1996). This is most pronounced for 
the covalent interactions, which are worst described by 
the rigid-atom model usually used for X-ray diffraction 
refinement. However, comparative topological studies of 
the theoretical and experimental charge densities of the 
compounds displaying shared interactions (Abramov & 
Okamura, 1996; Tsirelson, 1996) revealed that atomic 
thermal-motion effects are not crucial for the possibility 
of quantitative and semiquantitative evaluation of the 
respective charge density and its Laplacian at the bond 
critical point from a highly accurate X-ray diffraction 
experiment. Such accuracy does not seem to be lim- 
iting for the semiquantitative evaluation of the local 
kinetic energy at the bond critical point of the accurate 
experimental charge density by the suggested method. 

4. Conclusions 

A new approach for determination of the electronic 
kinetic energy density G based on the partitioning of 
electron density is proposed in the present study. The 
application of this method to the theoretical and experi- 
mental (multipole) charge densities shows that it allows 
a quantitative and a semi-quantitative description of G in 
the internuclear regions, in particular at the bond critical 
points, of compounds displaying closed-shell and shared 
interatomic interactions, respectively. This information 
appears to be important for chemical-bond study by 
the quantum-topological analysis of experimental charge 
densities in, for example, a series of related compounds. 

The error analysis in G(r) as derived from experi- 
mental data by (6) and (15) and comparative study of 
the results of the suggested method for the experimental 
charge densities and those obtained by an accurate 
theoretical study of the corresponding periodic systems 
will be the subjects of forthcoming studies. 

Support of this work by the Science and Technol- 
ogy Promotion Fund is gratefully acknowledged. The 
author is also grateful to anonymous referees for helpful 
comments. 
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